

Dynamic Shielding for Reinforcement Learning in Black-Box Environments

<u>Masaki Waga</u>¹, Ezequiel Castellano², Sasinee Pruekprasert³, Stefan Klikovits², Toru Takisaka⁴, Ichiro Hasuo²

Kyoto University¹, National Institute of Informatics², National Instutite of Advanced Industrial Science and Technology³, University of Electric Science and Technology of China⁴ **Originally Presented at ATVA 2022 26th Oct. 2022**

prevent unsafe exploration

Dynamic Shielding for Reinforcement Learning in Black-Box Environments

only for white-box env. \rightarrow also for black-box env.

<u>Masaki Waga</u>¹, Ezequiel Castellano², Sasinee Pruekprasert³, Stefan Klikovits², Toru Takisaka⁴, Ichiro Hasuo²

Kyoto University¹, National Institute of Informatics², National Instutite of Advanced Industrial Science and Technology³, University of Electric Science and Technology of China⁴ **Originally Presented at ATVA 2022 26th Oct. 2022**

Reinforcement Learning (RL)

Applications of RL

Worklife

NEWS

Sign in

Home War in Ukraine Coronavirus Climate Video World Asia UK Business Tech Science

Sport

Reel

Home

Tech

Artificial intelligence: Google's AlphaGo beats Go master Lee Se-dol

() 12 March 2016

BBC

An Algolia Company

https://www.bbc.com/news/technology-35785875 https://chatbotslife.com/deep-learning-in-finance-learning-to-trade-with-q-rl-and-dqns-6c6cff4a1429

Applications of RL

Worklife

NEWS

Sign in

Home War in Ukraine Coronavirus Climate Video World Asia UK Business Tech Science

Sport

Reel

Home

Tech

Artificial intelligence: Google's AlphaGo beats Go master Lee Se-dol

() 12 March 2016

BBC

An Algolia Company

https://www.bbc.com/news/technology-35785875 https://chatbotslife.com/deep-learning-in-finance-learning-to-trade-with-q-rl-and-dqns-6c6cff4a1429

Applications of RL

Worklife

NEWS

BBC

Sign in

Home War in Ukraine Coronavirus Climate Video World Asia UK Business Tech Science Tech

Sport

Artificial intelligence: Google's AlphaGo beats Go master Lee Se-dol

() 12 March 2016

https://www.bbc.com/news/technology-35785875

https://carla.org/2020/04/22/release-0.9.9/

https://chatbotslife.com/deep-learning-in-finance-learning-to-trade-with-q-rl-and-dqns-6c6cff4a1429

RL with Physical Env.

Undesirable actions may (eventually) break HW

https://www.roscomponents.com/1326-thickbox_default/turtlebot-3.jpg

https://web.archive.org/web/20190417171518if_/http://emanual.robotis.com/assets/images/platform/turtlebot3/challenges/autorace_dankook_1.jpg

Q. Can we prevent undesired actions during training?

A. Yes if we have some prior knowledge of env.

Safe RL with Shielding

Safe RL with Shielding [Alshiekh+, AAAI'18] Safe Actions Safe Action B Observation /Reward **Action** rvation System Model Strategy $\sigma: Loc \to \mathscr{P}(Act)$ Spec. **No Crash**

Safe RL with Shielding [Alshiekh+, AAAI'18] Safe Actions Safe Action B Observation /Reward Action rvation System Model Strategy Requires $\sigma: Loc \to \mathscr{P}(Act)$ system model!! Spec. **No Crash**

Q. Can we reduce undesired actions during training without prior system model?

Dynamic Shielding Safe Actions [Contribution] **Safe Action** acc. acc. B Observation /Reward 2 လ 0 Action **/Observation** Passive Automata Learning

Contributions

- Introduce the dynamic shielding scheme
 - Idea: passive automata learning + shielding
- Modified RPNI algorithm for passive autom. learning
 - to maintain necessary exploration
- Experiment results show that dynamic shielding reduces # of undesired actions during training

Outline

- Preliminaries
 - Static shielding
 - RPNI algorithm for passive automata learning
- Dynamic shielding + modification of RPNI algorithm
 - Idea 1: passive automata learning + shielding
 - Idea 2: additional requirements to deem two sequences are the same
- Experiments

(Preemptive) Shield

- Shield is stateful, i.e., Shield: $(Act \times Obs)^+ \rightarrow \mathscr{P}(Act)$
- We use a shield with finite state space
 - → Mealy machine with input: $Act \times Obs$, output: $\mathscr{P}(Act)$

Shield Synthesis

- 1. Given: system model \mathscr{M} and specification φ
 - *M*: Mealy machine with 2 players
 - φ : safety LTL formula
- 2. Construct a safety game ${\mathscr G}$ by combining ${\mathscr M}$ and φ
- 3. Solve \mathscr{G} to obtain the set of winning actions \rightarrow Use it as the safe actions

Safe RL with Shielding

Safe RL with Shielding

Outline

- Preliminaries
 - Static shielding
 - RPNI algorithm for passive automata learning
- Dynamic shielding + modification of RPNI algorithm
 - Idea 1: passive automata learning + shielding
 - Idea 2: additional requirements to deem two sequences are the same
- Experiments

Passive Automata Learning & RPNI-style Algorithm for Mealy machines

[Oncina & Garcia, 1992]

Given: Set $T \subseteq Act^+ \times Obs$ of words with labels (training data)

Learn: Mealy machine \mathscr{M} compatible with Ti.e. $\forall (w, o) \in T \cdot \mathscr{M}(w) = o$

Idea:

- 1. Construct a prefix tree \tilde{T} from T
- 2. Merge nodes of \tilde{T} unless it makes nondeterministic branching

1. Construct a prefix tree \tilde{T} from TInitial prefix tree representing the training data

1. Construct a prefix tree \tilde{T} from TInitial prefix tree representing the training data

2. Merge nodes of \tilde{T} unless it makes nondeterministic branching

2. Merge nodes of \tilde{T} unless it makes nondeterministic branching

2. Merge nodes of T unless it makes nondeterministic branching

2. Merge nodes of \tilde{T} unless it makes nondeterministic branching

2. Merge nodes of \tilde{T} unless it makes nondeterministic branching

a/r

 n_0

Final result with no compatible nodes

Observation of the RPNI

- Learns a small Mealy machine by merging nodes
 - Generalization in machine learning
- No data \rightarrow can be anything
 - Result can be largely different from the ground truth if the training data is small

Outline

- Preliminaries
 - Static shielding
 - RPNI algorithm for passive automata learning
- Dynamic shielding + modification of RPNI algorithm
 - Idea 1: passive automata learning + shielding
 - Idea 2: additional requirements to deem two sequences are the same
- Experiments

Idea of Dynamic Shielding

Explicitly learn the outcome of the actions
→ exploit it to avoid undesired behavior

- In the beginning, we know nothing
 → We cannot guarantee anything
- At a certain point, we know some of the unsafe actions
 → Use this information to prevent same mistake
 - By generalization, we also prevent similar mistakes

Dynamic Shielding Safe Actions [Contribution] **Safe Action** acc. acc. B Observation /Reward 2 လ 0 Action **/Observation** Passive Automata Learning

Dynamic Shielding Safe Actions [Contribution] **Safe Action** acc. acc. Observation /Reward 2 လ 0 **Previous Observations as training data** $a_1, a_2, ..., a_n \to o_1$ Passive Automata Learning $a'_{1}, a'_{2}, \dots, a'_{n'} \rightarrow o_{2}$ a "1, a "2, ..., a "n" $\rightarrow o_3$

Difficulties in Dynamic Shielding

- Exploration is prevented if deemed to be unsafe
- At an early state, the training data is limited
 - Learned model is unreliable
- Learning algorithm should not merge nodes if the confidence of the similarity is low
 - Otherwise, necessary exploration may be prevented

RPNI algorithm with additional merging requirements [Contribution]

Idea: merge nodes only if we are confident enough

Evidence of the confidence:

common children with enough depth

RPNI algorithm with additional merging requirements [Contribution]

Idea: merge nodes only if we are confident enough

Evidence of the confidence:

common children with enough depth

Example: minimum depth = 2

Heuristics to adaptively decide minimum depth

Merging should be less greedy in the beginning because:

- the training data is small
- we want varletry exploration
- Adaptively decide the minimum depth based on the episode length

Concretely:
$$\left[\frac{ep_{\max} - \sum_{i=0}^{N} |ep_i|/N}{\sum_{i=0}^{N} |ep_i|/N}\right], \text{ with } ep_{\max}: \text{ maximum episode length}$$
$$\sum_{i=0}^{N} |ep_i|/N: \text{ average episode length}$$

Outline

- Preliminaries
 - Static shielding
 - RPNI algorithm for passive automata learning
- Dynamic shielding + modification of RPNI algorithm
 - Idea 1: passive automata learning + shielding
 - Idea 2: additional requirements to deem two sequences are the same
- Experiments

Setting of Experiments

- Implemented dynamic shielding with Python3 and Java
- Used 7 benchmarks mostly from the literature
 - discrete, continuous ($[-1,1]^4$), and image observation
 - **Baselines:**

•

- RL with no safety mechanism (Plain)
- RL with safe padding (SafePadding)
 - A shielding-style method for black-box setting
 - No generalization by state merging
 - Different construction
- AMD EPYC 7702P, NVIDIA GeForce RTX 2080Ti, 125GiB RAM

RQ 1. Safety by Dynamic Shielding

Mean # of training episodes with undesired behaviors

	Plain	SafePadding	Dynamic Shielding (Ours)
WaterTank	1883.67	1892.4	177.13
GridWorld	6996.4	7322.23	5623.43
CliffWalk	1493.2	1528.67	478.20
Taxi	8723.13	2057.33	37.77
SelfDrivingCar	6403.07	6454.6	5662.4
SideWalk	373.6	427.93	273.37
CarRacing	180.13	141.17	41.73

RQ 1. Safety by Dynamic Shielding

Mean # of training episodes with undesired behaviors

	Plain	SafePadding	Dynamic Shielding (Ours)
WaterTank	1883.67	1892.4	177.13
GridWorld	6996.4	7322.23	5623.43
CliffWalk	1493.2	1528.67	478.20
Taxi	8723.13	2057.33	37.77
SelfDrivingCar	6403.07	6454.6	5662.4
SideWalk	373.6	427.93	273.37
CarRacing	180.13	141.17	41.73

RQ 1. Safety by Dynamic Shielding

Mean # of training episodes with undesired behaviors

	Plain	SafePadding	Dynamic Shielding (Ours)
WaterTank	1883.67	1892.4	177.13
GridWorld	6996.4	7322.23	5623.43
CliffWalk	1493.2	1 ≈ 0.4% of I	Plain 478.20
Taxi	8723.13	2057.33	37.77
SelfDrivingCar	6403.07	6454.6	5662.4
SideWalk	373.6	≈ 23% of Pl	273.37
CarRacing	180.13	141.17	41.73

RQ 2. Controller's Performance

Mean reward of the resulting controller in the testing phase

	Plain	SafePadding	Dynamic Shielding (Ours)
WaterTank	918.89	919.81	921.81
GridWorld	0.37	0.46	0.07
CliffWalk	-69.13	-66.00	-65.93
Taxi	-147.61	-139.62	-92.93
SelfDrivingCar	28.83	28.86	29.81
SideWalk	0.93	0.90	0.67
CarRacing	375.53	509.25	622.07

RQ 2. Controller's Performance

Mean reward of the resulting controller in the testing phase

	Plain	SafePadding	Dynamic Shielding (Ours)
WaterTank	918.89	919.81	921.81
GridWorld	0.37	0.46	0.07
CliffWalk	-69.13	-66.00	-65.93
Taxi	-147.61	-139.62	-92.93
SelfDrivingCar	28.83	28.86	29.81
SideWalk	0.93	0.90	0.67
CarRacing	375.53	509.25	622.07
		≈ 166% of Plain	M. Waga (Kvoto U.)

RQ 2. Controller's Performance

Mean reward of the resulting controller in the testing phase

	Plain	SafePadding	Dynamic Shielding (Ours)
WaterTank	918.89	919.81	921.81
GridWorld	0.37	0.46	0.07
CliffWalk	-69.13	Significantly worse	-65.93
Taxi	-147.61	-139.62	-92.93
SelfDrivingCar	28.83	28.86	29.81
SideWalk	0.93	0.90	0.67
CarRacing	375.53	509.25	622.07
		≈ 166% of Plain	M. Waga (Kyoto U.)

RQ 3. Overhead of Dynamic Shielding

Mean exec. time [min] of the whole RL process

	Plain	SafePadding	Dynamic Shielding (Ours)
WaterTank	31.01	32.45	101.35
GridWorld	2.95	24.79	75.81
CliffWalk	5.92	6.09	13.98
Taxi	5.601	5.83	10.2
SelfDrivingCar	14.43	81.99	168.12
SideWalk	12.71	28.91	106.6
CarRacing	127.5	278.24	208.87

RQ 3. Overhead of Dynamic Shielding

Mean exec. time [min] of the whole RL process

	Plain	SafePadding	Dynamic Shielding (Ours)
WaterTank	31.01	32.45	101.35
GridWorld	2.95	24.79	75.81
CliffWalk	5.92	6.09	13.98
Taxi	5.601	5.83	10.2
SelfDrivingCar	14.43	81.99	168.12
SideWalk	12.71	28.91	106.6
CarRacing	127.5	278.24	208.87

RQ 3. Overhead of Dynamic Significantly slower Shielding (≈ + 1-2 hours)

Mean exec. time [min] of the whole RL process

	Plain	SafePadding	Dynamic Shielding (Ours)
WaterTank	31.01	32.45	101.35
GridWorld	2.95	24.79	75.81
CliffWalk	5.92	6.09	13.98
Taxi	5.601	5.83	10.2
SelfDrivingCar	14.43	81.99	168.12
SideWalk	12.71	28.91	106.6
CarRacing	127.5	278.24	208.87
	33		M. Waga (Kyoto U.)

RQ 3. Overhead of Dynamic Shielding

Mean exec. time [min] of the whole RL process

	Plain	SafePadding Dynamic Shielding (Ours)
WaterTank	31.01	32.45 101.35
GridWorld	2.95	\approx +70 min. of Plain 75.81
CliffWalk	5.92	6.09 13.98
Taxi	5.601	≈ +94 min, of Plain
SelfDrivingCar	14.43	8 168.12
SideWalk	12.71	2 ≈ +81 min. of Plain 106.6
CarRacing	127.5	278.24 208.87

Conclusions & Future works

- Improve the safety of exploration in RL with black-box env.
 - Idea: passive automata learning + shielding
- Undesired behaviors were significantly prevented
 - Note: $\gg 0$ but (hopefully) still useful for some usage
- Current limitation: Leaned system model is deterministic
 → Future work: Extension for stochastic models

Appendix

Detail of our Implementation

- Implemented in Python3 and Java
- Used libraries (only major ones):
 - Stable Baselines 3 or Keras-RL (in Python3): for RL
 - LearnLib (in Java): for the RPNI algorithm
 - Our modification of the RPNI algorithm is also in Java
 - Bridging between Python3 and Java: py4j
- Available at: https://doi.org/10.5281/zenodo.6906673

List of the Benchmarks

	Benchmark's origin	Observation space (size)	Network	Learning algorithm	# of steps
WATERTANK	Alshiekh et al. [1]	Discrete (714)	MLP	PPO	500,000
GridWorld	Our original	Discrete (625)	MLP	PPO	100,000
TAXI	OpenAI Gym [7]	Discrete (500)	MLP	PPO	200,000
CliffWalk	OpenAI Gym [7]	Discrete (48)	MLP	PPO	200,000
SelfDrivingCar	Alshiekh et al. $[1]$	Continuous $([-1,1]^4)$	MLP	DQN	200,000
SIDEWALK	MiniWorld [9]	Image $(80 \times 60 \times 3 \times 256)$	CNN	PPO	100,000
CARRACING	OpenAI Gym [7]	Image $(96 \times 96 \times 3 \times 256)$	CNN	PPO	200,000

Other Experiment Results (Safety)

Other Experiment Results (Performance)

Example: Limited Exploration due to Wrong Merging

Simple Grid World (A: agent; G: goal; X: Wall, should not hit)

XXXGXXX XX XX XX X XX A XXXXXXX

Training Data

$$\rightarrow \uparrow \leftarrow (crash) \leftarrow \uparrow \leftarrow (crash)$$

$$\rightarrow \uparrow \rightarrow (crash) \leftarrow \uparrow \rightarrow (crash)$$

$$\rightarrow \uparrow \uparrow \uparrow (crash) \leftarrow \uparrow \uparrow \uparrow (crash)$$

$$\rightarrow \uparrow \uparrow \rightarrow (crash)$$

← ↑ ↑ ← (crash)

Outcome of "→ ↑" and "← ↑" seems
 the same from the training data
 "→ ↑ ↑ ←" is deemed to be unsafe

Benchmark: Sidewalk

Success

Unsafe

Benchmark: Sidewalk

Success

Unsafe

Benchmark: CarRacing

Success

Unsafe

Benchmark: CarRacing

Success

Unsafe

